

# **CAIE IGCSE Chemistry**

## 2.6 Giant covalent structures

Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0









### Describe the giant covalent structures of graphite and diamond

#### <u>Diamond</u>

- In diamond, each carbon atom is covalently bonded to 4 other carbon atoms
- Its structure is a tetrahedral 3D shape
- Diamond is very hard due to many strong covalent bonds
- Cannot conduct electricity as there are no delocalised electrons

#### Graphite

- In graphite, each carbon atom is covalently bonded to 3 other carbons
- Its structure consists of layers of hexagonal rings with no covalent bonds between the layers
- The layers are connected by weak intermolecular forces, meaning the layers can slide over each other resulting in graphite being soft





• One electron from each carbon atom is delocalised, meaning graphite can conduct electricity since the delocalised electrons carry charge

#### Relate the structures and bonding of graphite and diamond to their uses

#### Graphite

- Lubricant layers slide over each other due to weak intermolecular forces
- Conductor (e.g. electrodes in batteries) can conduct electricity due to delocalised electrons

#### <u>Diamond</u>

Cutting tools – very hard due to rigid structure held together by strong covalent bonds





(Extended only) Describe the giant covalent structure of silicon(IV) oxide (silicon dioxide), SiO<sub>2</sub>

- Silicon dioxide, also known as silica, is the main component of sand
- Each silicon atom is covalently bonded to 4 oxygen atoms
- Each oxygen atom is covalently bonded to 2 silicon atoms
- Therefore, the formula is SiO<sub>2</sub> (since Si<sub>2</sub>O<sub>4</sub> simplified is SiO<sub>2</sub>)

(Extended only) Describe the similarity in properties between diamond and silicon(IV) oxide, related to their structures

- In silicon (IV) oxide, each silicon atom is covalently bonded to 4 oxygen atoms and in diamond, each carbon atom is covalently bonded to 4 carbon atoms
- Both have strong covalent bonds which require a lot of energy to break so both diamond and silicon (IV) oxide have high melting and boiling points
- Both diamond and silicon (IV) oxide have their atoms bonded in a tetrahedral arrangement which means both structures are very hard and rigid

